Calsyntenin-1 Docks Vesicular Cargo to Kinesin-1
نویسندگان
چکیده
منابع مشابه
Calsyntenin-1 docks vesicular cargo to kinesin-1.
We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain a...
متن کاملCalsyntenin - 1 Docks Vesicular Cargo to Kinesin - 1 □ D □ V
We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain a...
متن کاملPhosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1.
Kinesin light chain 1 (KLC1) binds to the intracellular cytoplasmic domain of the type-1 membrane-spanning protein calsyntenin-1 (also known as alcadein-α) to mediate transport of a subset of vesicles. Here, we identify serine 460 in KLC1 (KLC1ser460) as a phosphorylation site and show that mutation of KLC1ser460 influences the binding of KLC1 to calsyntenin-1. Mutation of KLC1ser460 to an alan...
متن کاملCargo selection by specific kinesin light chain 1 isoforms.
Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins...
متن کاملThe Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development
Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT) cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology of the Cell
سال: 2006
ISSN: 1059-1524,1939-4586
DOI: 10.1091/mbc.e06-02-0112